Simultaneous zeros of a cubic and quadratic form
نویسندگان
چکیده
منابع مشابه
Small Zeros of Quadratic Forms
Let N ≥ 2 be an integer, F a quadratic form in N variables over Q, and Z ⊆ Q N an L-dimensional subspace, 1 ≤ L ≤ N . We prove the existence of a small-height maximal totally isotropic subspace of the bilinear space (Z, F ). This provides an analogue over Q of a wellknown theorem of Vaaler proved over number fields. We use our result to prove an effective version of Witt decomposition for a bil...
متن کاملAnalytical Solution of Linear, Quadratic and Cubic Model of PTT Fluid
An attempt is made for the first time to solve the quadratic and cubic model of magneto hydrodynamic Poiseuille flow of Phan-Thein-Tanner (PTT). A series solution of magneto hydrodynamic (MHD) flow is developed by using homotopy perturbation method (HPM). The results are presented graphically and the effects of non-dimensional parameters on the flow field are analyzed. The results reveal many i...
متن کامل¿ Functions of a Quadratic Form
Let Q be a positive definite integral quadratic form in ti variables, with the additional property that the adjoint form Q' is also integral. Using the functional equation of the Epstein zeta function, we obtain a symmetric functional equation of the ¿-function of Q with a primitive character to mod q (additive or multiplicative) defined by £io(2(x))C(x)-ï. Re(s) > nl2> where the summation exte...
متن کاملSmall Zeros of Quadratic Forms over Q
Let N ≥ 2 be an integer, F a quadratic form in N variables over Q, and Z ⊆ Q N an L-dimensional subspace, 1 ≤ L ≤ N . We prove the existence of a small-height maximal totally isotropic subspace of the bilinear space (Z, F ). This provides an analogue over Q of a well-known theorem of Vaaler proved over number fields. We use our result to prove an effective version of Witt decomposition for a bi...
متن کاملReal zeros of quadratic Dirichlet L - functions
A small part of the Generalized Riemann Hypothesis asserts that L-functions do not have zeros on the line segment ( 2 , 1]. The question of vanishing at s = 2 often has deep arithmetical significance, and has been investigated extensively. A persuasive view is that L-functions vanish at 2 either for trivial reasons (the sign of the functional equation being negative), or for deep arithmetical r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2011
ISSN: 0024-6107
DOI: 10.1112/jlms/jdr018